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Individuals are known to differ in their sensitivity to cocaine. Cocaine is known to inhibit the re-uptake of
monoamines. The response to cocaine has also been found to depend on monoamines inside reserpine-
sensitive storage vesicles. The present study examined the effects of reserpine (1–2 mg/kg) on cocaine-
induced behavior (10–15 mg/kg) in Low Responders (LR) and High Responders (HR) to novelty rats. LR
displayed less cocaine-induced walking, wall rearing, free rearing and stereotyped behavior than HR did. The
dose of 1 mg/kg of reserpine decreased cocaine-induced walking, wall rearing, free rearing and stereotyped
behavior in LR, but not in HR. A dose of 2 mg/kg of reserpine was required to inhibit cocaine-induced behavior
in HR. Combining these behavioral findings with our previously reported neurochemical finding that a higher
dose of reserpine was required to inhibit the accumbal dopamine response to cocaine in HR than in LR
(Verheij et al., 2008), suggests that HR are more sensitive to the behavioral effects of cocaine than LR because
cocaine can release more monoamines from storage vesicles in HR than in LR. Our behavioral data also
demonstrate that the individual differences in sensitivity to reserpine are not only limited to the
dopaminergic system of the nucleus accumbens.
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1. Introduction

Individual differences in the susceptibility to psychostimulants
have extensively been reported, both in humans (Ball et al., 1994;
Gynther et al., 1995; Jaffe and Archer, 1987; van den Bree et al., 1998)
and in animals (Mantsch et al., 2001; Piazza et al., 1989, 2000). In this
study we focused on two types of rat that are known to differ in their
acute response to cocaine (COC). These individuals, which co-exist in
a normal outbred population of Wistar rats, are selected on the basis
of their exploratory response in a novel environment and, accordingly,
labeled low responders (LR) and high responders (HR) to novelty
(Bevins et al., 1997; Cools et al., 1990; Cools and Gingras, 1998; Cools
and Tuinstra, 2003; Dellu et al., 1996; Kabbaj, 2004; Piazza et al., 1989,
1991; Rouge-Pont et al., 1993; Verheij and Cools, 2008). These rats are
generally referred to as an animal model for low and high sensation
seeking in man (Ballaz et al., 2007a, 2007b; Cools and Ellenbroek,
2002; Dellu et al., 1996).
Previous studies have demonstrated that COC increases mono-
amine levels in the nucleus accumbens to a smaller degree in LR than
in HR (Chefer et al., 2003; Hooks et al., 1991b; Verheij et al., 2008). In
addition, the behavioral response to COC has been shown to be
smaller in LR than in HR (Hooks et al., 1992, 1991a, 1991b). COC is
known to inhibit the re-uptake of monoamines by blocking
plasmalemmal monoamine transporters (Lee et al., 2001). However,
both neurochemical and behavioral studies have demonstrated that
the response to COC depends also on monoamines inside storage
vesicles (Davis, 1985; Florin et al., 1995; Hurd and Ungerstedt, 1989;
McMillen, 1983; McMillen et al., 1980; Pifl et al., 1995; Scheel-Kruger
et al., 1977; Venton et al., 2006; Verheij et al., 2008). We have recently
demonstrated that the monoaminergic storage pools of the nucleus
accumbens of LR are smaller than the monoaminergic storage pools of
the nucleus accumbens of HR (Cools and Verheij, 2002; Verheij and
Cools, 2009b; Verheij et al., 2008). We have, therefore, proposed that
LR are less sensitive to the neurochemical effects of COC than HR,
because COC can release less monoamines from storage vesicles in LR
than in HR (Verheij and Cools, 2008; Verheij et al., 2008).

In the present study we have used the indole alkaloid reserpine
(RES). RES binds to vesicular monoamine transporters (Henry et al.,
1998; Kirshner et al., 1963). After RES treatment, monoaminergic
storage vesicles are known to become empty (Colliver et al., 2000;
Dahlstrom et al., 1965; Gong et al., 2003; Pothos et al., 1998; Wagner,
1985). Following the dose of 1 mg/kg of RES, COC could still increase
the levels of accumbal dopamine in HR, but not in LR rats (Verheij
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Fig. 1. Effects of saline (upper/lower panel), 10 mg/kg (upper panel) and 15 mg/kg
(lower panel) of cocaine on the duration (s) of walking behavior in LR (circle) and HR
(square). Cocaine-treated rats are represented by a filled line, saline-treated rats are
represented by a dotted line. All rats were pretreated with the solvent of reserpine
(=solvent) 24 h before saline or cocaine was given. Data are expressed as mean±SEM.
LR = Low Responders to novelty, HR = High Responders to novelty. # = Significant
differencebetween cocaine-treatedand saline-treated LR (Student's t-test), *=Significant
difference between cocaine-treated and saline-treated HR (Student's t-test), & =
Significant difference between saline-treated LR and saline-treated HR (Student's t-test).
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et al., 2008). A higher dose of 2 mg/kg of RESwas needed to inhibit the
COC-induced increase of accumbal dopamine in HR (Verheij et al.,
2008). The aim of the present study was to analyze whether these
individual differences in the sensitivity to RES do exist not only at the
neurochemical level, but also at the behavioral level. The expected
RES-induced changes in behavior demonstrate that the RES-induced
neurochemical changes are functional. Based on our neurochemical
findings, we hypothesized that COC-treated LR are more sensitive to
the behavioral effects of RES than COC-treated HR.

2. Methods

2.1. Subjects

Adult male LR (n=41) and HR (n=64) that were selected from
the outbred strain of Nijmegen Wistar rats were used throughout the
study. Apart from the assessment of the behavioral response to COC,
these rats were also used to measure the COC-induced changes of
accumbal dopamine (see Introduction). The results of this neuro-
chemical analysis have been published in a separate paper (Verheij
et al., 2008). All rats (weight=180–220 g) were reared and housed in
macrolon cages (42×26×15 cm; n=3–4 per cage) under a fixed 12/
12 h light/dark cycle (lights on: 07.00 a.m.) in a temperature-
controlled room (21±1.7 °C). Water and food pellets were available
ad libitum. The experiments were performed in accordance with
institutional, national and international guidelines for animal care and
welfare. All procedures were in agreement with the NRC (National
Research Council) 2003 guidelines for the care and use of mammals in
neuroscience and behavioral research and the European communities
council directive of 24 November 1986 (86/609/EEC). Every effort was
made to minimize the number of animals used and their suffering.

2.2. Open-field selection

Rats were individually housed 3 days before the open-field selection
procedure (Verheij et al., 2008). Testing took place between 09.00 h and
17.00 h in a room illuminatedbywhite lightof 170 lx. The ratwasplaced
on a black, square table (160×160 cm)madeof Perspex. This open-field
is 95 cm elevated above the floor and surrounded by a white neutral
background (270×270×270 cm). Behavior was recorded with a
computerized automated tracking system for a period of 30 min. The
objective parameters of ambulation and habituation time were used to
select LR and HR (see also: Cools et al., 1990; Ellenbroek and Cools,
2002). Ambulation was defined as the overall distance (cm) traveled in
30 min. Habituation time was defined as the duration of the period (s)
that started as soon as the rat began to explore the open-field and ended
as soon as the locomotor activity stopped for at least 90 s. Rats that
habituated in less than 480 s and walked less than 4800 cm in 30 min
were labeled LR, whereas rats that habituated after 840 s and walked
more than 6000 cm in 30 min were labeled HR (see also: Verheij et al.,
2008). Habituation time in addition to ambulationwas used as selection
criterion, because traveled distance per se is not always a reliable
criterion (Cools et al., 1997; Saigusa et al., 1999). To select extremes in
ambulation we used fixed criteria, instead of a split that is based on
mean ambulation, because the mean of ambulation may well differ
between rats of different breeders (Ellenbroek and Cools, 2002).
Typically, 40–50% of the rats within a Wistar population do not fit our
criteria (see Results) and are excluded from analysis. Efforts weremade
to include these animals in other studies (Verheij et al., 2007).

2.3. Reserpine and cocaine treatment

At 12.00 h on the first day of the experiment, LR and HR were
injected with RES or its solvent. After this systemic injection (volume:
1 ml/kg, i.p.), rats were returned to their home cage and left
undisturbed. At 12.00 h on the second day of the experiment, a
systemic injection (volume 1 ml/kg, i.p.) of COC or its solvent (saline)
was given. Rats were exposed to a new cage immediately after their
second injection. This novel cage was slightly larger than the home
cage (new dimensions: 30×30×35 cm) and lacked sawdust on the
floor.

2.4. Doses of reserpine

Both LR and HR were injected with 1 mg/kg of RES (Daiichi, Tokyo,
Japan) on day 1 and 10 or 15 mg/kg of COC (Brocacef, Amsterdam, The
Netherlands) on day 2. Because the dose of 1 mg/kg of RES was found
to have no effect on the COC-induced neurochemical changes in HR
(Verheij et al., 2008), an additional group of HR was pretreated with a



45M.M.M. Verheij, A.R. Cools / Pharmacology, Biochemistry and Behavior 98 (2011) 43–53
dose of 2 mg/kg of RES on day 1.The relatively low doses of 1 and
2 mg/kg of RES were chosen because it has previously been
demonstrated that these doses were effective in depleting RES-
sensitive monoaminergic storage vesicles (Verheij and Cools, 2007;
Verheij and Cools, 2009a, 2009b; Verheij et al., 2008).
2.5. Behavior

Behavior was recorded on video tape and analyzed offline by an
observer blind to the type of rat and its treatment, using a computer
program (KEYS®) developed at our institute (Saigusa et al., 1999).
Recordings were made directly after the administration of COC for a
period of 90 min. Given that the studies by Hooks et al., revealing
individual differences in the behavioral response to COC (see
Introduction), were studies using a general measure of activity
(photocell counts), the present study measured activity in more detail.
The duration of the following behavioral items was scored: walking
(displacement of all 4 paws over a minimum distance of 1 cm for a
period of at least 3 s), wall rearing (front paw(s) raised against the side
Fig. 2. Effects of saline (upper/lower panel), 10 mg/kg (upper panel) and 15 mg/kg (lower pan
(Fig. 2B) in LR (circle) andHR (square). Cocaine-treated rats are represented by a filled line, salin
reserpine (= solvent) 24 h before saline or cocaine was given. Data are expressed as mean±S
difference between cocaine-treated and saline-treated LR (Student's t-test), * = Significant dif
wall(s) of the cage), free rearing (front paw(s) raised off the cage floor
without touching a side wall of the cage) and grooming (washing any
part of the body). In addition, the frequency of wall rearing and free
rearingwas calculated. These behavioral itemswere chosen because the
COC-induced changes on these behaviorsmay verywell bemediated by
different neuronal substrates (see Discussion).

2.6. Statistical analysis and expression of the data

Behavior was expressed as the mean duration±SEM per block of
10 min. The behavioral effects were statistically compared, using a
three-way ANOVA with the factors type of rat (levels: HR and LR),
treatment (levels: 0, 10 and 15 mg/kg of COC) and time for repeated
measures (levels: 0–10, 10–20, 20–30, 30–40, 40–50, 50–60, 60–70,
70–80 and 80–90 min). This ANOVA was followed by a two-way
ANOVA (factors: treatment and time for repeated measures) and a
post-hoc Student's t-test where appropriate. SPSS for Windows
(Release 12.0) was used to statistically analyze the data. A probability
level of pb0.05 was taken as significant in every test.
el) of cocaine on the duration (s) of normal free rearing (Fig. 2A) and normal wall rearing
e-treated rats are represented by a dotted line. All ratswere pretreatedwith the solvent of
EM. LR = Low Responders to novelty, HR = High Responders to novelty. # = Significant
ference between cocaine-treated and saline-treated HR (Student's t-test).

image of Fig.�2
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3. Results

3.1. Open-field selection

The open-field selection procedure provided 22% LR (n=41) and
35% HR (n=64). The average distance traveled in 30 min (±SEM)
was 3757±152 cm and 8260±269 cm in LR and HR respectively. The
average habituation time (±SEM) was 392±20 s in LR and 1323±
52 s in HR. Rats that did not fulfill the criteria (43% of the population)
were not included in this study.

3.2. Two types of rearing

The duration of every single rearing bout was analyzed. The mean
duration of a single rearing bout after saline was 5.0±0.2 s. In case the
duration of a single rearing bout after COC was not different from the
mean duration of the single rearing bouts after saline (z-scoreb1.96,
pN0.05), this rearing bout was labeled ‘normal’. Both the dose of 10 and
Fig. 3. Effects of saline (upper/lower panel), 10 mg/kg (upper panel) and 15 mg/kg (lower
panel) of cocaine on the duration (s) of grooming behavior in LR (circle) and HR (square).
Cocaine-treated rats are represented by a filled line, saline-treated rats are represented by
a dotted line. All ratswerepretreatedwith the solvent of reserpine (=solvent) 24 hbefore
saline or cocaine was given. Data are expressed as mean±SEM. LR = Low Responders to
novelty, HR = High Responders to novelty. # = Significant difference between cocaine-
treated and saline-treated LR (Student's t-test), * = Significant difference between
cocaine-treated and saline-treated HR (Student's t-test).
the dose of 15 mg/kg of COC resulted in normal rearing. Rats treated
with 15 mg/kg of COC also displayed another type of rearing. The
duration of a single rearing bout of this type was significantly less than
themeanduration of the single rearing bouts after saline (z-scoreN1.96,
pb0.05). Because of the high frequency of this type of rearing (to be
discussed in the later part), these rearing boutswere labeled ‘repetitive’.

3.3. Description of normal and repetitive rearing

To verify that normal rearing was different from repetitive rearing,
the frequency and total duration of both types of behavior were
analyzed. Given that only rats that were treated with 15 mg/kg of COC
displayed repetitive rearing (as previously discussed), this analysis of
rearing was restricted to this single dose of COC. The maximum
frequency of normal rearing following 15 mg/kg of COC was 16±3
rearing acts per 10 min and the average duration of a single rearing bout
of this type was 4.6±0.4 s. Rats spent a total time of 213±34 s on
normal rearing. Themaximum frequency of repetitive rearing following
15 mg/kg of COC was 94±12 rearing acts per 10 min (this was
significantly higher than the maximum frequency of normal rearing:
Student's t-test: pb0.05) and the average duration of a single rearing
bout of this typewas only 1.3±0.1 s (thiswas significantly less than the
average duration of a single bout of normal rearing: Student's t-test:
pb0.05). Rats spent a total time of 388±68 s on repetitive rearing
(this was significantly more than the total time of normal rearing:
Student's t-test: pb0.05). Normal rearing consisted of both free andwall
rearing whereas repetitive rearing was directed only to the wall.

3.4. Behavioral changes after cocaine

The behavioral effects of COC are depicted in Figs. 1–4 (Fig. 1:
walking, Fig. 2A: normal free rearing, Fig. 2B: normalwall rearing, Fig. 3:
grooming and Fig. 4: repetitive wall rearing). It has previously been
shown that the behavioral effects of low and high doses of COC are
mediated by distinct neuronal substrates (Carboni et al., 1989; Di Chiara
and Imperato, 1988). For this reason, the effects of COC were analyzed
per single dose (to be discussed in the later part). A summary of this
statistical analysis (three-way ANOVA for repeated measures) is
provided in Table 2 (rat type×treatment (× time) effects) and Table 1
(treatment (× time) effects). Because LR and HR have previously been
found to differ in their sensitivity to COC (Hooks et al., 1992, 1991a,
1991b), the RES-induced changes in COC-induced behavior were
analyzed per type of rat (to be discussed in the later part). A summary
of this statistical analysis (two-way ANOVA for repeated measures) is
provided in Table 3 (treatment (× time) effects).

3.4.1. Treatment effects of saline
Figs. 1–4 illustrate that the duration of all behavioral items, apart

from repetitive wall rearing, was increased in rats that were treated
with saline (Table 1).

3.4.2. Treatment effects of cocaine
Figs. 1 and 2A show that both the dose of 10 mg/kg of COC and the

dose of 15 mg/kg of COC increased walking and normal free rearing
(Table 1). Both doses of COC changed normal wall rearing and grooming
in a time-dependent manner (Table 1). Figs. 2B and 3 show that the
effects of COC on normal wall rearing and grooming were biphasic. COC
decreased normal wall rearing between 0 and 30 min (Table 1) and
grooming between 0 and 40 min (Table 1) and increased normal wall
rearing between 30 and 90 min (Table 1) and grooming between 40 and
90 min (Table 1). The transition points (30 min for normal wall rearing
and40 min for grooming)were arbitrarily chosen on the basis of the time
course that was found (see Figs. 2B and 3). Fig. 4 illustrates that rats
treated with 10 mg/kg of COC did not display repetitive wall rearing
(Table 1) whereas this type of rearing did increase in rats treated with
15 mg/kg of COC (Table 1).

image of Fig.�3


Fig. 4. Effects of saline (upper/lower panel), 10 mg/kg (upper panel) and 15 mg/kg
(lower panel) of cocaine on the duration (s) of repetitive wall rearing in LR (circle) and
HR (square). Rats treated with saline or 10 mg/kg of cocaine did not show repetitive
wall rearing. All rats were pretreated with the solvent of reserpine (= solvent) 24 h
before cocaine was given. Data are expressed as mean±SEM. LR = Low Responders to
novelty, HR=High Responders to novelty. #= Significant difference between cocaine-
treated and saline-treated LR (Student's t-test), * = Significant difference between
cocaine-treated and saline-treated HR (Student's t-test).

Table 1
Treatment effects per single dose of cocaine. The dose of 0 mg/kg of cocaine was statistically c
(ANOVA for repeated measures). For both doses of cocaine, treatment×time effects (df=
Treatment×time effects (df=8) were also found for repetitive wall rearing after 15 mg/kg o
for all behavioral items, except for repetitive wall rearing. The treatment effects of both d
between 0 and 30 min (df=2) and increased between 30 and 90 min (df=6). The treatmen
between 0 and 40 min (df=3) and increased between 40 and 90 min (df=5). ↑=signi
decrease of behavior, ↓↑=significant cocaine-induced decrease followed by a significant co

Normal free
rearing: Fig. 2A

Normal wall
rearing: Fig. 2B

p<0.001 p<0.001

p<0.001

p<0.001

p<0.001

p<0.001

0–90min:

0–90min:

0–90min:

F(8,128) == 6.766,

F(8,240) = 3.731, F(8,240) = 6.430,

Dose of cocaine Walking: Fig.1 

0 mg/kg (saline) 0–90min:

10 mg/kg 0–90min:

15 mg/kg 0–90min:
F(8,240) = 24.006, F(8,240) = 5.067,

F(8,128) = 46.253,
0–90min:F(8,128) = 34.257

0–90min:F(8,240) = 21.056

0–90min:F(8,240) = 19.162

0–30min:F(2,60) = 21.266,
30–90min:F(6,180) = 5.271

0–30min:F(2,60) = 29.480,
30–90min:F(6,l80) = 6.943
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3.4.3. Rat type effects of saline
In the rats that were treated with saline (the solvent of COC), rat

type effects were found only for walking behavior. Fig. 1 illustrates
that walking increased less in saline-treated LR than in saline-treated
HR (Table 2). These individual differences in walking behavior were
limited to the first 20 min (Student's t-test). No differences were
found between saline-treated LR and saline-treaded HR for the
remaining behavioral items (Table 2).

3.4.4. Rat type effects of 10 mg/kg of cocaine
In rats that were treated with the relatively moderate dose of

10 mg/kg of COC, rat type effects were found for walking, normal free
rearing and normal wall rearing. Figs. 1 and 2A demonstrate that
walking and normal free rearing increased less in LR than in HR
(Table 2). It is important to note that COC still resulted in individual
differences in walking behavior, even during the period that saline-
treated LR did not anymore differ from saline-treated HR (see Fig. 1,
time≥30 min). Analysis of the first period of normal wall rearing (see
Fig. 2B) revealed that the decrease of this behavior did not differ
between the two types of rat (Table 2) whereas the increase of normal
wall rearing in the second period was less in LR compared to HR
(Table 2). Analysis of the first and second period of grooming (see
Fig. 3) revealed that both the decrease and the increase of this
behavior did not differ between the two types of rat (Table 2). Given
that rats that were treated with 10 mg/kg of COC did not display
repetitive wall rearing (as previously discussed), no rat type effects
were found for this behavioral item (Table 2).

3.4.5. Rat type effects of 15 mg/kg of cocaine
In the rats that were treated with the relatively high dose of 15 mg/

kg of COC, rat type effects were found for repetitive wall rearing. Fig. 4
illustrates that this dose of COC increased repetitive wall rearing less in
LR than in HR (Table 2). Figs. 1–3 illustrate that 15 mg/kg of COC did not
result in rat type effects for the remaining behavioral items (Table 2).

3.5. Behavioral changes after reserpine

Figs. 5–8 show the effects of 1 mg/kg of RES on COC-induced
behavior (Fig. 5A/B: walking, Fig. 6A/B: normal free and normal wall
rearing, Fig. 7A/B: grooming and Fig. 8: repetitive wall rearing). A
summary of the statistical analysis is provided in Table 3.

3.5.1. Effects of 1 mg/kg of reserpine on cocaine-induced behavior

3.5.1.1. Effects of 1 mg/kg of reserpine in LR. The relatively low dose of
1 mg/kg of RES changed all behavioral items in COC-treated LR.
ompared with either the dose of 10 mg/kg of cocaine or the dose of 15 mg/kg of cocaine
8) were found for walking, normal free rearing, normal wall rearing and grooming.

f cocaine, but not after 10 mg/kg of this drug. For saline, time effects (df=8) were found
oses of cocaine on normal wall rearing were biphasic. Normal wall rearing decreased
t effects of both doses of cocaine on grooming were also biphasic. Grooming decreased
ficant saline or cocaine-induced increase of behavior, ↓=significant cocaine-induced
caine-induced increase of behavior, x=non significant (n.s.) change of behavior.

Repetitive wall
rearing: Fig. 4

Grooming: Fig. 3

n.s. x

n.s. x

0–90min:
F(8,240) = 15.847,

, p<0.001

, p<0.001

, p<0.001

 p<0.001
, p<0.001

 p<0.001
, p<0.001

0–90min:F(8,128) = 9.111, p<0.001

0–90min:F(8,240) = 8.976, p<0.001
0–40min:F(3,90) = 4.989, p  =0.003 
40–90min:F(5,l50) = 2.395, p=0.040 

0–90min:F(8,240) = 13.920, p<0.001
0–40mm:F(3,90) = 3.625, p=0.016 
40–90min:F(5,l50) = 5.300, p<0.001 p<0.001

image of Fig.�4
Unlabelled image


Table 2
Rat type effects per single doses of cocaine: The effects of cocaine were compared between LR and HR (ANOVA for repeated measures). Cocaine resulted in rat type×treatment×time
effects (dfN1) or rat type×treatment effects (df=1) for walking, normal free rearing, normal wall rearing and repetitive wall rearing. Rat type×time effects (df=8) were found for
walking in saline-treated rats. LRbHR: significant smaller effects of saline or cocaine in LR than in HR, LR=HR: similar effects of saline or cocaine in LR andHR (=non significant (n.s.) rat
type×treatment×(time) effect).

Dose of cocaine Walking
Fig. 1

Normal free rearing:
Fig. 2A

Normal wall rearing:
Fig. 2B

Grooming:
Fig. 3

Repetitive wall rearing:
Fig. 4

F(8,128) == 4.766,
p<0.001

LR<HR

LR<HR

LR<HR
F(8,240) = 2.115,
p=0.035 

n.s. LR = HR n.s. LR = HR

LR = HR

LR = HR 

LR = HR

LR = HR

LR = HR

LR = HR

LR = HR
LR = HR

n.s.

n.s.

n.s.

n.s.

n.s.

0–90min:
F(8,240) = 3.260,
p=0.002 

LR<HR 0–30 min: n.s.

F(6,180) = 2.357,
p=0.032 

LR<HR

LR<HR

0 mg/kg  (saline) 0–90min:

10 mg/kg 0–90min:

15 mg/kg n.s. n.s. LR = HR 0–40 min: n.s.
F(l,14) = 5.408,
p=0.036 

40–90 min: n.s.
0–90min:

30–90 min:

Fig. 5. Effects of reserpine on the duration (s) of walking elicited by 10 mg/kg (Fig. 5A) and 15 mg/kg (Fig. 5B) of cocaine in LR (upper panel) and HR (lower panel). Rats treated with
reserpine-solvent and cocaine are represented by a filled line, rats treated with reserpine and cocaine are represented by a dotted line. The effective dose of reserpine (1 mg/kg in LR
and 2 mg/kg in HR) is displayed in white symbols whereas the non-effective dose of reserpine (1 mg/kg in HR) is displayed in grey symbols. Data are expressed as mean±SEM. LR=
Low Responders to novelty, HR = High Responders to novelty. # = Significant effect of reserpine in cocaine-treated LR (Student's t-test), * = Significant effect of reserpine in
cocaine-treated HR (Student's t-test).
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Fig. 6. Effects of reserpine on the duration (s) of normal free rearing (inlay) and normal wall rearing (main graph) elicited by 10 mg/kg (Fig. 6A) and 15 mg/kg (Fig. 6B) of cocaine in
LR (upper panel) and HR (lower panel). Rats treated with reserpine-solvent and cocaine are represented by a filled line, rats treated with reserpine and cocaine are represented by a
dotted line. The effective dose of reserpine (1 mg/kg in LR and 2 mg/kg in HR) is displayed in white symbols whereas the non-effective dose of reserpine (1 mg/kg in HR) is displayed
in grey symbols. Data are expressed as mean±SEM. LR = Low Responders to novelty, HR = High Responders to novelty. # = Significant effect of reserpine in cocaine-treated LR
(Student's t-test), * = Significant effect of reserpine in cocaine-treated HR (Student's t-test).
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Figs. 5–8 illustrate that this low dose of RES reduced walking (Table 3),
normal free rearing (Table3), normalwall rearing (Table3) and repetitive
wall rearing (Table 3) in these rats, but increased grooming (Table 3).

3.5.1.2. Effects of 1 mg/kg of reserpine in HR. Figs. 5–8 revealed that
none of the behavioral items were affected by the relatively low dose
of 1 mg/kg of RES in COC-treated HR (Table 3).

3.5.2. Effects of 2 mg/kg of reserpine on cocaine-induced behavior in HR
To rule out that COC-induced behavior in HR is not at all dependent

on RES-sensitive storage vesicles, a new group of these rats was
pretreated with a higher dose of RES. The effects of 2 mg/kg of RES on
COC-induced behavior in HR are also depicted in Figs. 5–8 (Fig. 5A/B:
walking, Fig. 6A/B: normal free and normal wall rearing, Fig. 7A/B:
grooming and Fig. 8: repetitive wall rearing). A summary of the
statistical analysis is provided in Table 3.

The relatively high dose of 2 mg/kg of RES changed 4 out of the 5
behavioral items in COC-treated HR. Figs. 5–7 illustrate that the high
dose of RES reduced walking (Table 3), normal free rearing (Table 3)
and normal wall rearing (Table 3) in these rats, but increased
grooming (Table 3). Fig. 8 shows that the relatively high dose of RES
did not change repetitive wall rearing (Table 3).
4. Discussion

4.1. Treatment effects of cocaine (see Table 1 for summary)

COC increased walking (Fig. 1), normal free rearing (Fig. 2A) and
repetitivewall rearing (Fig. 4). The effects of COConnormalwall rearing
(Fig. 2B) and grooming (Fig. 3) appeared to be biphasic. These two
behavioral items initially decreased and subsequently increased. Given
that especially walking and repetitive wall rearing dominated behavior
immediately after the administration of COC, the execution of these
behavioral itemsmight initially have preventednormalwall rearing and
grooming to take place (behavioral competition). According to this
reasoning, normal wall rearing and grooming could only appear once
walking and repetitive wall rearing started to decrease.

image of Fig.�6


Fig. 7. Effects of reserpine on the duration (s) of grooming behavior elicited by 10 mg/kg (Fig. 7A) and 15 mg/kg (Fig. 7B) of cocaine in LR (upper panel) and HR (lower panel). Rats
treated with reserpine-solvent and cocaine are represented by a filled line, rats treated with reserpine and cocaine are represented by a dotted line. The effective dose of reserpine
(1 mg/kg in LR and 2 mg/kg in HR) is displayed in white symbols whereas the non-effective dose of reserpine (1 mg/kg in HR) is displayed in grey symbols. Data are expressed as
mean±SEM. LR= Low Responders to novelty, HR=High Responders to novelty. #= Significant effect of reserpine in cocaine-treated LR (Student's t-test), * = Significant effect of
reserpine in cocaine-treated HR (Student's t-test).
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In contrast to normal free/wall rearing that was marked by a low
frequency and a short total duration, repetitive wall rearing was
marked by a high frequency and a long total duration (see Results).
Because stereotyped behavior has been defined as behavior that is
continuously repeated and lasts for a long period of time (Ellenbroek
and Cools, 1993), the observed COC-induced changes in repetitive
wall rearing are supposed to reflect stereotypic behavior. Given that
rats exposed to a new environment express high levels of normal
rearing and walking (Saigusa et al., 1999), the observed COC-induced
changes in these behavioral items may very well reflect normal
exploration behavior. The finding that COC strongly increased
stereotypic wall rearing and walking whereas normal rearing and
grooming were simultaneously reduced supports the early work of
Lyon and Robbins (1975) showing that increasing doses of psychos-
timulants cause an organism to exhibit increasing behavioral
response rates within a decreasing number of response categories.

4.2. Rat type effects of cocaine (see Table 2 for summary)

LR treated with the solvent of COC displayed less walking than HR
treated with the solvent of COC (Fig. 1), whereas the duration of the
remaining behavioral items did not differ between saline-treated LR
and HR (Figs. 2–4). The moderate dose of 10 mg/kg of COC increased
walking (Fig. 1), normal free rearing (Fig. 2A) and normal wall
rearing (Fig. 2B) to a smaller degree in LR than inHR. Similar to saline,
the dose of 15 mg/kg of COC resulted in individual differences in one
behavioral item only. This higher dose of COC increased repetitive
wall rearing less in LR than in HR (Fig. 4). Our results fit in with the
previously reported finding that COC increases general activity
(photocell counts) less strongly in LR than in HR (Hooks et al.,
1992, 1991a, 1991b). The present findings also confirm our
previously reported notion (Cools et al., 1997) that the behavioral
differences between LR and HR are particularly evident in case these
rats are exposed to intermediate (pharmacological) challenges
(injection of 10 mg/kg of COC) and become less when the challenge
is either too small (saline injection) or too large (injection of 15 mg/
kg of COC).

4.3. Effects of reserpine on cocaine-induced walking and rearing (see
Table 3 for summary)

The dose of 1 mg/kg of RES reduced COC-induced walking, normal
free rearing and normal wall rearing in LR (Figs. 5–6), but had no
effect on these behaviors in HR (Figs. 5–6). Only the higher dose of
2 mg/kg of RES was able to reduce COC-induced walking, normal free
rearing and normal wall rearing in HR (Figs. 5–6). Neither 1 nor 2 mg/
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Fig. 8. Effects of reserpine on the duration (s) of repetitive wall rearing elicited by 15 mg/
kg of cocaine in LR (upper panel) and HR (lower panel). Rats treated with reserpine-
solvent and cocaine are represented by afilled line, rats treatedwith reserpine and cocaine
are represented by a dotted line. The dose of 10 mg/kg of cocaine did not induce repetitive
wall rearing (see Fig. 4). Data are expressed as mean±SEM. LR = Low Responders to
novelty, HR = High Responders to novelty. # = Significant effect of reserpine in cocaine-
treated LR (Student's t-test), No significant effect of reserpine in cocaine-treated HR
(Student's t-test).

Table 3
Treatment effects of reserpine per type of rat: The effects of reserpine+cocaine were compa
1 mg/kg of reserpine, treatment×time effects (df=8) or treatment effects (df=1) were fou
2 mg/kg of reserpine resulted in treatment×time effects (df=8) or treatment effects (df
reserpine-induced increase of behavior, ↓=significant reserpine-induced decrease of behav

Type of rat Dose of reserpine Dose of cocaine Walking:
Fig. 5

Nor
rear

p= = 0.012
F(l,15
p= = 0

p<0.001
F(l,14
p= = 0

HR 1 mg/kg 15 mg/kg n.s. x n.s.

p<0.001
F(l,16
p<0

LR 1 mg/kg 10 mg/kg F(l,15) = 8.178,

LR 1 mg/kg 15 mg/kg F(8,112) = 4.352,

HR 2 mg/kg 10 mg/kg F(1,16) = 100.423,

HR 2 mg/kg 15 mg/kg F(8,120) = 6.531,
p<0.001

F(l,15
p=0

HR 1 mg/kg 10 mg/kg n.s. x n.s.
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kg of RES affected COC-induced repetitive wall rearing in HR, whereas
1 mg/kg of RES already decreased this behavior in LR (Fig. 8). These
data provide evidence in favor of our hypothesis (see Introduction)
that COC-treated LR are more sensitive to the behavioral effects of RES
than COC-treated HR. The fact that RES, which depletes vesicular
monoamines, decreased COC-induced walking and rearing suggests
that these COC-induced behaviors are accompanied by an increased
release of monoamines from storage vesicles.

The present data indicate that COC-induced walking and normal
free/wall rearing are mediated by a substrate that is different from the
substrate involved in COC-induced repetitive wall rearing. First,
10 mg/kg of COC did not increase the duration of repetitive wall
rearing in LR or in HR (Fig. 4 and Table 1). In contrast, this dose of COC
strongly increased the duration of walking and normal free/wall
rearing in both types of rat (Figs. 1–2 and Table 1). Second, the dose of
15 mg/kg of COC resulted in individual differences in repetitive wall
rearing (Fig. 4 and Table 2), but this dose of COC did not result in
individual differences in walking and normal free/wall rearing
(Figs. 1–2 and Table 2). Third, 2 mg/kg of RES did not alter COC-
induced repetitive wall rearing in HR (Fig. 8 and Table 3). However,
this dose of RES strongly reduced COC-induced walking and normal
free/wall rearing in these rats (Figs. 5–6 and Table 3).

4.4. Effects of reserpine on cocaine-induced grooming (see Table 3 for
summary)

The dose of 1 mg/kg of RES increased COC-induced grooming in LR,
but had no effect on this behavior in HR (Fig. 7). Only the higher dose of
2 mg/kgofRESwasable to increaseCOC-inducedgrooming inHR(Fig. 7).
These data underline that COC-treated LR are more sensitive to the
behavioral effects of RES than COC-treated HR. The fact that RES, which
depletes vesicular monoamines, increases COC-induced grooming
suggests that COC-induced grooming is accompanied by a decreased
release of monoamines from storage vesicles. The notion that COC-
inducedwalking, normal free/wall rearing and repetitivewall rearing are
all accompanied by a monoamine increase (see Section 4.3), suggests
that COC-induced grooming is mediated by a third substrate that differs
from the substrates involved in either COC-induced walking and normal
free/wall rearing or COC-induced repetitive wall rearing.

4.5. Methodological considerations

High doses of RES may inhibit motor behavior by increasing
muscle rigidity (Jurna, 1976). This impaired motor performance is
typically observed after the intraperitoneal administration of (more
than) 10 mg/kg of RES (Johnels, 1983; Johnels et al., 1978; Southwick
red to the effects of solvent+cocaine (ANOVA for repeated measures). For the dose of
nd for all behavioral items in LR, but for none of the behavioral items in HR. The dose of
=1) for all behavioral items, except for repetitive wall rearing, in HR. ↑=significant
ior, x=non significant (n.s.) change of behavior.

mal free
ing: Fig. 6

Normal wall
rearing: Fig. 6

Grooming:
Fig. 7

Repetitive wall
rearing: Fig. 8

) = 5.016,
.041

F(8,120) = 2.420,
p= = 0.019

F(8,120) = 2.086,
p=0.042

) = 8.670,
.011

F(l,14) = 6.338,
p= = 0.025

F(8,112) = 4.435,
p<0.001

F(8,112) = 4.523,
p<0.001

x n.s. x n.s. x n.s. x

) = 21.349,
.001

F(8,l28) = 3.836,
p<0.001

F(8,128) = 12.272,
p<0.001

) = 7.888,
.013

F(8,120) = 4.119,
p<0.001

F(8,120) = 4.081,
p<0.001

n.s. x

x n.s. x n.s. x n.s. x

n.s. x

n.s. x
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and Anderson, 1981; Wagner and Anderson, 1982). The effects of 1
and 2 mg/kg of RES observed in the present study cannot be explained
by impaired motor performance. First, the dose of 1 mg/kg of RES did
not inhibit walking behavior during the first 40 min following 15 mg/
kg of COC in LR (Fig. 5B). Second, the dose of 2 mg/kg of RES did not
inhibit walking behavior during the first 30 min following this dose of
COC in HR (Fig. 5B). Third, RES was found to increase, instead of
decrease, COC-induced grooming (a behavioral item that highly
depends onmotor performance) in both types of rat that were treated
with 15 mg/kg of COC (Fig. 7B).

4.6. Conclusions

Our findings nicely fit in with the previously reported findings by
Hooks et al. that COC increases general activity less strongly in LR than
in HR (see also Section 4.2). The present study, in which the effects of
COC on distinct types of behavior were studied in more detail (see
Methods), provides the original information that COC differentially
affected each type of these behaviors in these rats (Section 4.2). The
indole alkaloid RES strongly changed COC-induced behavior. A higher
dose of RES was required to affect COC-induced walking, normal free
rearing, normalwall rearing, grooming and repetitivewall rearing inHR
than in LR (Sections 4.3 and4.4). These results couldnot be explainedby
RES-induced changes in motor performance (Section 4.5).

There is ample evidence showing that COC-induced behavior is
accompanied by an increase of monoamines in the brain (Amalric and
Koob, 1993). We have previously shown that individual differences in
the sensitivity to COC are most likely not due to individual differences
in the re-uptake of these monoamines (Verheij et al., 2008).
Accordingly, the observed RES-induced individual differences in
behavior may very well be explained by our recently reported finding
that LR are marked by a smaller monoaminergic storage pool than HR
(Cools and Verheij, 2002; Verheij and Cools, 2009b; Verheij et al.,
2008). We hypothesize that COC changed behavior less strongly in LR
than in HR (Section 4.2), because COC can release less monoamines
from storage vesicles in LR than in HR. Given that the observed
individual differences in the behavioral effects of RES can only be
explained when at least three different substrates are affected
(Sections 4.3 and 4.4), we speculate that individual differences in
monoaminergic storage capacity are not only limited to the
dopaminergic system of the nucleus accumbens (see Introduction).
In this respect it is important to note that LR and HR have been found
to differ in the make-up and reactivity of their noradrenergic (Verheij
and Cools, 2009b) and serotonergic (Verheij et al., 2009) systems as
well (for review: Verheij and Cools, 2008).

4.7. Impact

The fact that RES strongly reduces the behavioral (presents study)
and neurochemical (Verheij et al., 2008) response to COC opens the
intriguing possibility that drugs that deplete monoaminergic storage
vesicles may have therapeutic effects in the treatment of (the onset
of) COC abuse (for review: Verheij and Cools, 2008). Two clinical trials
on the effects of RES in COC-addicted subjects have already revealed
promising results (Berger et al., 2005; Gorelick et al., 2004). However,
Winhusen et al. (2007) were not able to confirm these results. In these
studies only one single dose of RES was tested. The fact that no
differences were found between RES and placebo treated COC users in
the study of Winhusen et al. (2007) may well be explained by our
finding that not all subjects are sensitive to the same dose of RES. It
has to be noted that high doses of RES can have a number of side
effects like hypotension and nasal congestion. It is, therefore, highly
recommended to test for the clinical safety of newly developed drugs
that act by depleting monoaminergic storage vesicles.

Highand lowresponders tonovelty rats aregenerally referred to as an
animal model for high and low sensation seeking in man (Ballaz et al.,
2007a, 2007b;Cools andEllenbroek, 2002;Delluet al., 1996).On thebasis
of our animal studies, it is hypothesized that COC-addicted individuals
that are marked by high sensation seeking scores need higher doses of
RES in order to elicit therapeutic effects compared to COC-addicted
individual that are marked by low sensation seeking scores.
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